您好,欢迎来到汇意旅游网。
搜索
您的当前位置:首页A Cognitive Vision System for Space Robotics

A Cognitive Vision System for Space Robotics

来源:汇意旅游网
ACognitiveVisionSystemforSpaceRobotics

FaisalZ.Qureshi1,DemetriTerzopoulos1,2,andPiotrJasiobedzki3

1

Dept.ofComputerScience,UniversityofToronto,Toronto,ONM5S3GA,Canada

faisal,dt@cs.toronto.edu

2

CourantInstitute,NewYorkUniversity,NewYork,NY10003,USA

dt@nyu.edu

3

MDRoboticsLimited,Brampton,ONL6S4J3,Canada

pjasiobe@mdrobotics.ca

Abstract.Wepresentacognitively-controlledvisionsystemthatcombineslow-levelobjectrecognitionandtrackingwithhigh-levelsymbolicreasoningwiththepracticalpurposeofsolvingdifficultspaceroboticsproblems—satelliteren-dezvousanddocking.Thereasoningmodule,whichencodesamodeloftheen-vironment,performsdeliberationto1)guidethevisionsysteminatask-directedmanner,2)activatevisionmodulesdependingontheprogressofthetask,3)vali-datetheperformanceofthevisionsystem,and4)suggestcorrectionstothevisionsystemwhenthelatterisperformingpoorly.Reasoningandrelatedelements,amongthemintention,context,andmemory,contributetoimprovetheperfor-mance(i.e.,robustness,reliability,andusability).Wedemonstratethevisionsys-temcontrollingaroboticarmthatautonomouslycapturesafree-flyingsatellite.Currentlysuchoperationsareperformedeithermanuallyorbyconstructingde-tailedcontrolscripts.Themanualapproachiscostlyandexposestheastronautstodanger,whilethescriptedapproachistediousanderror-prone.Therefore,thereissubstantialinterestinperformingtheseoperationsautonomously,andtheworkpresentedhereisastepinthisdirection.Tothebestofourknowledge,thisistheonlysatellite-capturingsystemthatreliesexclusivelyonvisiontoestimatetheposeofthesatelliteandcandealwithanuncooperativesatellite.

1Introduction

Sincetheearliestdaysofthefield,computervisionresearchershavestruggledwiththechallengeofeffectivelycombininglow-levelvisionwithclassicalartificialintelligence.SomeoftheearliestworkinvolvedthecombinationofimageanalysisandsymbolicAItoconstructautonomousrobots[1,2].Theseattemptsmetwithlimitedsuccessbecausethevisionproblemwashard,andthefocusofvisionresearchshiftedfromvertically-integrated,embodiedvisionsystemstolow-level,stand-alonevisionsystems.Currentlyavailablelow-andmedium-levelvisionsystemsaresufficientlycompetenttosupportsubsequentlevelsofprocessing.Consequently,thereisnowarenewedinterestinhigh-level,orcognitivevision,whichisnecessaryifwearetorealizeautonomousrobotscapableofperformingusefulwork.Inthispaper,wepresentanembodied,task-orientedvisionsystemthatcombinesobjectrecognitionandtrackingwithhigh-levelsymbolicreasoning.Thelatterencodesasymbolicmodeloftheenvironmentandusesthemodeltoguidethevisionsysteminatask-directedmanner.

Wedemonstratethesystemguidingaroboticmanipulatorduringasatelliteservic-ingoperationinvolvingrendezvousanddockingwithamockupsatelliteunderlightingconditionssimilartothoseinorbit.On-orbitsatelliteservicingisthetaskofmaintain-ingandrepairingasatelliteinitsorbit.Itextendstheoperationallifeofthesatellite,mitigatestechnicalrisks,andreduceson-orbitlosses,soitisofparticularinteresttomultiplestakeholders,includingsatelliteoperators,manufacturers,andinsurancecom-panies.Currently,on-orbitsatelliteservicingoperationsarecarriedoutmanually;i.e.,byanastronaut.However,mannedmissionsusuallyhaveahighpricetagandtherearehumansafetyconcerns.Unmanned,tele-operated,ground-controlledmissionsarein-feasibleduetocommunicationsdelays,intermittence,andlimitedbandwidthbetweenthegroundandtheservicer.Aviableoptionistodevelopthecapabilityofautonomoussatelliterendezvousanddocking(AR&D).Mostnationalandinternationalspaceagen-ciesrealizetheimportantfutureroleofAR&Dandhavetechnologyprogramstode-velopthiscapability[3,4].

Autonomyentailsthattheon-boardcontrollerbecapableofestimatingandtrackingthepose(positionandorientation)ofthetargetsatelliteandguidingtheservicingspace-craftasit1)approachesthesatellite,2)manoeuvresitselftogetintodockingposition,and3)dockswiththesatellite.Ourvisionsystemmeetsthesechallengesbycontrollingthevisualprocessandreasoningabouttheeventsthatoccurinorbit—theseabilitiesfallunderthedomainof“cognitivevision.”Oursystemfunctionsasfollows:(Step1)capturedimagesareprocessedtoestimatethecurrentpositionandorientationofthesatellite(Fig.1),(Step2)behavior-basedperceptionandmemoryunitsusecontextualinformationtoconstructasymbolicdescriptionofthescene,(Step3)thecognitivemoduleusesknowledgeaboutscenedynamicsencodedusingsituationcalculustocon-structasceneinterpretation,andfinally(Step4)thecognitivemoduleformulatesaplantoachievethecurrentgoal.ThesceneinterpretationconstructedinStep3providesamechanismtoverifythefindingsofthevisionsystem.Theabilitytoplanallowsthesystemtohandleunforeseensituations.

Toourknowledge,thesystemdescribedhereisuniqueinasmuchasitistheonlyAR&Dsystemthatusesvisionasitsprimarysensorandthatcandealwithanuncooper-ativetargetsatellite.OtherAR&Dsystemseitherdealwithcooperativetargetsatellites,wherethesatelliteitselfcommunicateswiththeservicercraftaboutitsheadingand

Fig.1.Imagesobservedduringsatellitecapture.Theleftandcenterimageswerecapturedusingtheshuttlebaycameras.Therightimagewascapturedbytheend-effectorcamera.Thecenterimageshowsthearminhoveringpositionpriortothefinalcapturephase.Theshuttlecrewusetheseimagesduringsatelliterendezvousandcapturetolocatethesatelliteatadistanceofap-proximately100m,toapproachit,andtocaptureitwiththeCanadarm—theshuttlemanipulator.

pose,oruseothersensingaids,suchasradarsandgeostationarypositionsatellitesys-tems[5].1.1

RelatedWork

ThestateoftheartinspaceroboticsistheMarsExplorationRover,Spirit,thatisnowvisitingMars[6].Spiritisprimarilyatele-operatedrobotthatiscapableoftakingpic-tures,driving,andoperatinginstrumentsinresponsetocommandstransmittedfromtheground.Itlacksanycognitiveorreasoningabilities.Themostsuccessfulautonomousrobottodatethathascognitiveabilitiesis“Minerva,”whichtakesvisitorsontoursthroughtheSmithsonian’sNationalMuseumofAmericanHistory;however,visionisnotMinerva’sprimarysensor[7].Minervahasahostofothersensorsatitsdisposalincludinglaserrangefindersandsonars.Suchsensorsareundesirableforspaceopera-tions,whichhavesevereweight/energylimitations.

Asurveyofworkaboutconstructinghigh-leveldescriptionsfromvideocanbyfoundin[8].Knowledgemodelingforthepurposesofsceneinterpretationcaneitherbehand-crafted[9]orautomatic[10](asinmachinelearning).Thesecondapproachisnotfeasibleforourapplication:Itrequiresalargetrainingset,whichisdifficulttogatherinourdomain,inordertoensurethatthesystemlearnsalltherelevantknowledge,anditisnotalwaysclearwhatthesystemhaslearnt.Scenedescriptionsconstructedin[11]arericherthanthoseinoursystem,andtheirconstructionapproachismoresound;however,theydonotusescenedescriptionstocontrolthevisualprocessandformulateplanstoachievegoals.

Inthenextsection,weexplaintheobjectrecognitionandtrackingmodule.Sec-tion3describesthehigh-levelvisionmodule.Section4describesthephysicalsetupandpresentsresults.Section5presentsourconclusions.

2ObjectRecognitionandTracking

Theobjectrecognitionandtrackingmodule[12]processesimagesfromacalibratedpassivevideocamera-pairmountedontheend-effectoroftheroboticmanipulatorandcomputesanestimateoftherelativepositionandorientationofthetargetsatellite.It

ConfigurationControlVisionServerMonitoringid, 3D pose, 3D motion, confidenceServicerControllerUser InterfaceData Log3D location, 3D motionAcquisitionSparse 3DComputation3D Data3D Model (Satellite)id3D poseTrackingTargetDetection3D Model (Target)Target PoseEstimation &Tracking3D motion3D pose3D motion3D poseFig.2.Objectrecognitionandtrackingsystem.

supportsmediumandshortrangesatelliteproximityoperations;i.e.,approximatelyfrom20mto0.2m.

Duringthemediumrangeoperation,thevisionsystemcamerasvieweitherthecom-pletesatelliteorasignificantportionofit(image1inFig.3),andthesystemreliesonnaturalfeaturesobservedinstereoimagestoestimatethemotionandposeofthesatel-lite.Themediumrangeoperationconsistsofthefollowingthreephases:

–Inthefirstphase(model-freemotionestimation),thevisionsystemcombinesstereoandstructure-from-motiontoindirectlyestimatethesatellitemotioninthecamerareferenceframebysolvingforthecameramotion,whichisjusttheoppositeofthesatellitemotion[13].

–Thesecondphase(motion-basedposeacquisition)performsbinarytemplatematch-ingtoestimatetheposeofthesatellitewithoutusingpriorinformation[14].Itmatchesamodeloftheobservedsatellitewiththe3Ddataproducedbythelastphaseandcomputesarigidtransformation,generallycomprising3translationsand3rotations,thatrepresenttherelativeposeofthesatellite.Thesixdegreesoffree-dom(DOFs)oftheposearesolvedintwosteps.Thefirststep,whichismotivatedbytheobservationthatmostsatelliteshaveanelongatedstructure,determinesthemajoraxisofthesatellite,andthesecondstepsolvesthefourunresolvedDOFs—therotationaroundthemajoraxisandthethreetranslations—byanexhaustive3DtemplatematchingovertheremainingfourDOFs.

–Thelastphase(model-basedposetracking)tracksthesatellitewithhighprecisionandupdateratebyiterativelymatchingthe3Ddatawiththemodelusingaversionoftheiterativeclosestpointalgorithm[15].Thisschemedoesnotmatchhigh-levelfeaturesinthescenewiththemodelateveryiteration.Thisreducesitssensitiv-itytopartialshadows,occlusion,andlocallossofdatacausedbyreflectionsandimagesaturation.Undernormaloperativeconditions,modelbasedtrackingreturnsanestimateofthesatellite’sposeat2Hzwithanaccuracyontheorderofafewcentimetersandafewdegrees.

Atcloserange,thetargetsatelliteisonlypartiallyvisibleanditcannotbeviewedsimultaneouslyfrombothcameras(thesecondandthirdimagesinFig.3);hence,thevisionsystemprocessesmonocularimages.Theconstraintsontheapproachtrajectory

Fig.3.Imagesfromasequencerecordedduringanexperiment(firstimageat5m;thirdat0.2m)

ensurethatthedockinginterfaceonthetargetsatelliteisvisiblefromcloserange,somarkersonthedockinginterfaceareusedtodeterminetheposeandattitudeofthesatelliteefficientlyandreliablyatcloserange[12].Here,visualfeaturesaredetectedbyprocessinganimagewindowcenteredaroundtheirpredictedlocations.Thesefeaturesarethenmatchedagainstamodeltoestimatetheposeofthesatellite.Theposeesti-mationalgorithmrequiresatleast4pointstocomputethepose.Whenmorethanfourpointsarevisible,samplingtechniqueschoosethegroupofpointsthatgivesthebestposeinformation.Fortheshortrangevisionmodule,theaccuracyisontheorderofafractionofadegreeand1mmrightbeforedocking.

Thevisionsystemcanbeconfiguredontheflydependingupontherequirementsofaspecificmission.Itprovidescommandstoactivate/initialize/deactivateaparticularconfiguration.Thevisionsystemreturnsa4x4matrixthatspecifiestherelativeposeofthesatellite,avaluebetween0and1quantifyingtheconfidenceinthatestimate,andvariousflagsthatdescribethestateofthevisionsystem.

3CognitiveVisionController

Thecognitivevisioncontrollercontrolstheimagerecognitionandtrackingmodulebytakingintoaccountseveralfactors,including1)thecurrenttask,2)thecurrentstateoftheenvironment,3)theadvicefromthesymbolicreasoningmodule,and4)thecharac-teristicsofthevisionmodule,includingprocessingtimes,operationalranges,andnoise.Itconsistsofabehavior-based,reactiveperceptionandmemoryunitandahigh-leveldeliberativeunit.Thebehavior-basedunitactsasaninterfacebetweenthedetailed,con-tinuousworldofthevisionsystemandtheabstract,discreteworldrepresentationusedbythecognitivecontroller.Thisdesignfacilitatesavisioncontrollerwhosedecisionsreflectbothshort-termandlong-termconsiderations.3.1

PerceptionandMemory:SymbolicSceneDescription

Theperceptionandmemoryunitperformsmanycriticalfunctions.First,itprovidestightfeedbackloopsbetweensensingandactionthatarerequiredforreflexivebehavior,suchasclosingthecameras’shutterswhendetectingstrongglareinordertopreventharm.Second,itcorroboratesthereadingsfromthevisionsystembymatchingthemagainsttheinternalworldmodel.Third,itmaintainsanabstractedworldstate(AWS)thatrepresentstheworldatasymboliclevelandisusedbythedeliberativemodule.Fourth,itresolvestheissuesofperceptiondelaysbyprojectingtheinternalworldmodel

CloseNearMediumFarUpdate memory or flagdangerSensorFusion&SignalSmoothing.5m1.5m5mMatchCapturedSatellite DistanceBadBadGoodGoodProjectionMonitorCaptureAbstractedWorldStateEgomotion

Passage of timeWorkingMemoryActiveBehavior00.670.81Satellite Pose Confidence(a)(b)

Fig.4.(a)Behavior-basedperceptionandmemoryunit.(b)Theabstractedworldstaterepre-sentstheworldsymbolically.Forexample,thesatelliteiseitherCaptured,Close,Near,Medium,orFar.Theconversionfromnumericalquantitiesinthememorycentertothesymbolsintheabstractedworldstatetakesintoaccountthecurrentsituation.Forexample,translationfromnu-mericalvalueofsatelliteposeconfidencetothesymbolicvalueGoodorBaddependsupontheactivebehavior—forbehaviorMonitor,satellitepositionconfidenceisGoodwhenitisgreaterthan0.67;whereasforbehaviorCapturesatellitepositionconfidenceisGoodonlywhenitisgreaterthan0.8.

at“this”instant.Fifth,itperformssensorfusiontocombineinformationfrommultiplesensors;e.g.,whenthevisionsystemreturnsmultipleestimatesofthesatellite’spose.Finally,itensuresthattheinternalmentalstatereflectstheeffectsofegomotionandthepassageoftime.

Ateachinstant,theperceptionunitreceivesthemostcurrentinformationfromtheactivevisionconfigurations(Fig.2)andcomputesanestimateofthesatellitepositionandorientation.Indoingso,ittakesintoaccountcontextualinformation,suchasthecurrenttask,thepredicteddistancefromthesatellite,theoperationalrangesofvariousvisionconfigurations,andtheconfidencevaluesreturnedbytheactiveconfigurations.Anαβtrackerthenvalidatesandsmoothesthecomputedpose.Validationisdonebycomparingthenewposeagainstthepredictedposeusinganadaptivethreshold.

Theservicercraftseesitsenvironmentegocentrically.Thememorycentercon-stantlyupdatestheinternalworldrepresentationtoreflectthecurrentposition,head-ing,andspeedoftherobot.Italsoensuresthatintheabsenceofnewreadingsfromtheperceptioncentertheconfidenceintheworldstateshoulddecreasewithtime.Thereactivemodulerequiresdetailedsensoryinformation,whereasthedeliberativemoduledealswithabstractfeaturesabouttheworld.ThememorycenterfiltersoutunnecessarydetailsfromthesensoryinformationandgeneratestheAWS(Fig.4)whichdescribestheworldsymbolically.3.2

SymbolicReasoning:PlanningandSceneInterpretation

Thesymbolicreasoningmoduleconstructsplans1)toaccomplishgoalsand2)toex-plainthechangesintheAWS.TheplanthatbestexplainstheevolutionoftheAWSisaninterpretationofthescene,asitconsistsofeventsthatmighthavehappenedtobringaboutthechangesintheAWS.ThecognitivevisionsystemmonitorstheprogressofthecurrenttaskbyexaminingtheAWS,whichismaintainedinreal-timebytheperceptionandmemorymodule.Uponencounteringanundesirablesituation,thereasoningmod-uletriestoexplaintheerrorsbyconstructinganinterpretation.Ifthereasoningmodule

successfullyfindsasuitableinterpretation,itsuggestsappropriatecorrectivesteps;oth-erwise,itsuggeststhedefaultprocedureforhandlinganomaloussituations.

Thecurrentprototypeconsistsoftwoplanners:PlannerAspecializesinthesatel-litecapturingtaskandPlannerBmonitorstheabstractedworldstateanddetectsandresolvesundesirablesituations.WehavedevelopedtheplannersinGOLOG,whichisanextensionofthesituationcalculus[16].GOLOGuseslogicalstatementstomaintainaninternalworldstate(fluents)anddescribewhatactionsanagentcanperform(primi-tiveactionpredicates),whentheseactionsarevalid(preconditionpredicates),andhowtheseactionsaffecttheworld(successorstatepredicates).GOLOGprovideshigh-levelconstructs,suchasprocedurecalls,conditionals,loops,andnon-deterministicchoice,tospecifycomplexproceduresthatmodelanagentanditsenvironment.ThelogicalfoundationsofGOLOGenableustoproveplancorrectnessproperties,whichisdesir-able.

Actions

aTurnon(_)aLatch(_)

aErrorHandle(_)aSensor(_,_)aSearch(_)aMonitoraAlignaContactaGo(_,_,_)

aSatAttCtrl(_)aCorrectSatSpeed

FluentsfStatusfLatchfSensorfErrorfSatPos

fSatPosConffSatCenterfSatAlignfSatSpeedfSatAttCtrlfSatContact

Initial State:

fStatus(off), fLatch(unarmed), fSensor(all,off),

fSatPos(medium), fSatPosConf(no), fSatCenter(no), fAlign(no),fSatAttCtrl(on), fSatContact(no), fSatSpeed(yes), fError(no)Goal State:

fSatContact(yes)The Plan:

aTurnon(on), aSensor(medium,on), aSearch(medium), aMonitor,aGo(medium,near,vis), aSensor(short,on), aSensor(medium,off),aAlign, aLatch(arm), aSatAttCtrl(off), aContact

aBadCameraaSelfShadowaGlareaSun(_)aRange(_)

fSatPosConffSunfRange

Initial State:fRange(unknown),fSun(unknown),fSatPosConf(yes)

Goal State:fSatConf(no)

Explanation 1: aBadCamera (Default)Solution 1: aRetry

Explanation 2: aSun(front), aGlareSolution 2: aAbort

Explanation 3: aRange(near),aSun(behind), aSelfShadow

Solution 3: aRetryAfterRandomInterval

Fig.5.ExamplesoftheplansgeneratedbyPlannerAandPlannerB.

Theplannerscooperatetoachievethegoal—safelycapturingthesatellite.Thetwoplannersinteractthroughaplanexecutionandmonitoringunit,whichusesplanexecu-tioncontrolknowledgeUponreceivinganew“satellitecapturetask”fromthegroundstation,theplanexecutionandmonitoringmoduleactivatesPlannerA,whichgeneratesaplanthattransformsthecurrentstateoftheworldtothegoalstate—astatewherethesatelliteissecured.PlannerB,ontheotherhand,isonlyactivatedwhentheplanex-ecutionandmonitoringmoduledetectsaproblem,suchasasensorfailure.PlannerBgeneratesallplansthatwilltransformthelastknown“good”worldstatetothecurrent“bad”worldstate.Next,itdeterminesthemostlikelycauseforthecurrentfaultbycon-sideringeachplaninturn.Afteridentifyingthecause,PlannerBsuggestscorrections.Inthecurrentprototype,correctionsconsistof“abortmission,”“retryimmediately,”and“retryafterarandomintervaloftime”(thetaskisabortedifthetotaltimeexceedsthemaximumallowedtimeforthecurrenttask).Finally,afterthesuccessfulhandlingofthesituation,PlannerAresumes.

4Results

Wehavetestedthecognitivevisioncontrollerinasimulatedvirtualenvironmentandinaphysicallabenvironmentthatfaithfullyreproducestheilluminationconditionsofthespaceenvironment—stronglightsource,verylittleambientlight,andharshshadows.ThephysicalsetupconsistedoftheMDRoboticsLtd.proprietary“ReuseableSpaceVehiclePayloadHandlingSimulator,”comprisingtwoFanucroboticmanipulatorsandtheassociatedcontrolsoftware.Onerobotwiththecamerastereopairmountedonitsendeffectoractsastheservicer.Theotherrobotcarriesagrapplefixture-equippedsatellitemockupandexhibitsrealisticsatellitemotion.

Thecognitivevisioncontrollermetitsrequirements;i.e.,safelycapturingthesatel-liteusingvision-basedsensing(seeFig.3forthekindofimagesused),whilehandlinganomaloussituations.Weperformed800testrunsinthesimulatedenvironmentandover25testrunsonthephysicalrobots.Thecontrollerneverjeopardizeditsownsafetyorthatofthetargetsatellite.Itgracefullyrecoveredfromsensingerrors.Inmostcases,itwasabletoguidethevisionsystemtore-acquirethesatellitebyidentifyingthecauseandinitiatingasuitablesearchpattern.Insituationswhereitcouldnotresolvetheerror,itsafelyparkedthemanipulatorandinformedthegroundstationofitsfailure.

Fig.6.Thechaserrobotcapturesthesatelliteusingvisioninharshlightingconditionslikethoseinorbit.

5Conclusion

Futureapplicationsofcomputervisionshallrequiremorethanjustlow-levelvision;theywillalsohaveahigh-levelAIcomponenttoguidethevisionsysteminatask-directedanddeliberativemanner,diagnosesensingproblems,andsuggestcorrectivesteps.Also,anALifeinspired,reactivemodulethatimplementscomputationalmodelsofattention,context,andmemorycanactastheinterfacebetweenthevisionsystemandthesymbolicreasoningmodule.Wehavedemonstratedsuchasystemwithinthecontextofspacerobotics.OurpracticalvisionsysteminterfacesobjectrecognitionandtrackingwithclassicalAIthroughabehavior-basedperceptionandmemoryunit,anditsuccessfullyperformsthecomplextaskofautonomouslycapturingafree-flyingsatel-liteinharshenvironmentalconditions.Afterreceivingasinglehigh-level“dock”com-mand,thesystemsuccessfullycapturedthetargetsatelliteinmostofourtests,whilehandlinganomaloussituationsusingitsreactiveandreasoningabilities.

Acknowledgments

TheauthorsacknowledgethevaluabletechnicalcontributionsofR.Gillett,H.K.Ng,S.Greene,J.Richmond,Dr.M.Greenspan,M.Liu,andA.Chan.ThisworkwasfundedbyMDRoboticsLimitedandPrecarnAssociates.

References

[1]Roberts,L.:Machineperceptionof3-dsolids.InTrippit,J.,Berkowitz,D.,Chapp,L.,

Koester,C.,Vanderburgh,A.,eds.:OpticalandElectro-OpticalInformationProcessing,MITPress(1965)159–197

[2]Nilsson,N.J.:Shakeytherobot.TechnicalReport323,ArtificialIntelligenceCenter.SRI

International,MenloPark,USA(1984)

[3]Wertz,J.,Bell,R.:Autonomousrendezvousanddockingtechnologies—statusand

prospects.In:SPIE’s17thAnnualInternationalSymposiumonAerospace/DefenseSens-ing,Simulation,andControls,Orlando,USA(2003)

[4]Gurtuna,O.:Emergingspacemarkets:Enginesofgrowthforfuturespaceactivities(2003)

www.futuraspace.com/EmergingSpaceMarkets_fact_sheet.htm.

[5]Polites,M.:Anassessmentofthetechnologyofautomatedrendezvousandcapturein

space.TechnicalReportNASA/TP-1998-208528,MarshallSpaceFlightCenter,Alabama,USA(1998)

[6]NASA,J.P.L.:Marsexplorationrovermissionhome(2004)marsrovers.nasa.gov.[7]Burgard,W.,Cremers,A.B.,Fox,D.,Hahnel,D.,Lakemeyer,G.,Schulz,D.,Steiner,W.,

Thrun,S.:Experienceswithaninteractivemuseumtour-guiderobot.ArtificialIntelligence114(1999)3–55

[8]Howarth,R.J.,Buxton,H.:Conceptualdescriptionsfrommonitoringandwatchingimage

sequences.ImageandVisionComputing18(2000)105–135

[9]Arens,M.,Nagel,H.H.:Behavioralknowledgerepresentationfortheunderstandingand

creationofvideosequences.InGunther,A.,Kruse,R.,Neumann,B.,eds.:Proceedingsofthe26thGermanConferenceonArtificialIntelligence(KI-2003),Hamburg,Germany(2003)149–163

[10]Fernyhough,J.,Cohn,A.G.,Hogg,D.C.:Constructingqualitativeeventmodelsautmati-callyfromvideoinput.ImageandVisionComputing18(2000)81–103

[11]Arens,M.,Ottlik,A.,Nagel,H.H.:Naturallanguagetextsforacognitivevisionsystem.In

vanHarmelen,F.,ed.:Proceedingsofthe15thEuropeanConferenceonArtificialIntelli-gence(ECAI-2002),Amsterdam,TheNetherlands,IOSPress(2002)455–459

[12]Jasiobedzki,P.,Greenspan,M.,Roth,G.,Ng,H.,Witcomb,N.:Video-basedsystemfor

satelliteproximityoperations.In:7thESAWorkshoponAdvancedSpaceTechnologiesforRoboticsandAutomation(ASTRA2002),ESTEC,Noordwijk,TheNetherlands(2002)[13]Roth,G.,Whitehead,A.:Usingprojectivevisiontofindcamerapositionsinanimage

sequence.In:VisionInterface(VI2000),Montreal,Canada(2000)87–94

[14]Greenspan,M.,Jasiobedzki,P.:Posedeterminationofafree-flyingsatellite.In:Motion

TrackingandObjectRecognition(MTOR02),LasVegas,USA(2002)

[15]Jasiobedzki,P.,Greenspan,M.,Roth,G.:Posedeterminationandtrackingforautonomous

satellitecapture.In:Proceedingsofthe6thInternationalSymposiumonArtificialIntelli-genceandRobotics&AutomationinSpace(i-SAIRAS01),Montreal,Canada(2001)[16]Lesp´erance,Y.,Reiter,R.,Lin,F.,Scherl,R.:GOLOG:Alogicprogramminglanguagefor

dynamicdomains.JournalofLogicProgramming31(1997)59–83

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- hids.cn 版权所有 赣ICP备2024042780号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务